If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+2n-32=0
a = 1; b = 2; c = -32;
Δ = b2-4ac
Δ = 22-4·1·(-32)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{33}}{2*1}=\frac{-2-2\sqrt{33}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{33}}{2*1}=\frac{-2+2\sqrt{33}}{2} $
| 13=b/2+11 | | k+13=92 | | 3d+2d-30=-3+9d-15 | | 8−4z=–6−6z | | |4u-2|=|4u+5 | | 15^(-5x)+1=29 | | -b/17=23 | | 15=4m-1 | | 54=4w÷10 | | |4u-2|=|4u+5| | | 2n+3n-8=42 | | (2)3x+11=9x-14 | | x-400=550 | | 45+36u=66+23u=31 | | 8+x=12.5=62.5 | | z-90=2 | | 36x(x+1)=187 | | 4/5x-15=-22 | | 15-5x=x | | 49=5n–16 | | 2x^22x–419=0 | | 8(8+10)=9(+x) | | 17=g+3 | | 16-3q=3q+0 | | 120+10w=260 | | -7x-22=12-9x | | 30=3/5(x)+12 | | 2x^2+2x–419=0 | | 4(x+7)2-49=-13 | | 0x-4=3x+10 | | 24+3v=6(v+1)+3 | | (c+4)(c+7)=c^2=11c+28 |